Water Treatment in the Future

Water treatment is undergoing a profound transformation and is gaining in importance worldwide. Water is an increasingly scarce commodity. Particularly in poorer countries, it is not available in sufficient quantities. Bottlenecks are becoming more and more severe due to growing demand on the part of industry, agriculture and energy generation. Although problems such as water scarcity are of limited relevance here in Germany, a responsible, resource-saving approach to water is an important issue for the future. Water treatment plays a key role in the subject of water availability. Around 80 percent of waste water worldwide still goes untreated , though in many cases, treating it would be technically possible. In the long term there is therefore considerable potential for significantly reducing the level of consumption of water by industry.


Exploiting the potential of the water treatment of the future

At the same time, the focus is also on energy efficiency, especially in industrialised countries. Waste water treatment plants are considered veritable power guzzlers due to the energy-intensive processes in aeration tanks. Against a background of ambitious climate protection goals and rising energy prices, energy efficiency in water treatment will become one of the major issues for the future.

Particularly in the area of energy technology for waste water treatment tanks, it is clear that reliable technologies for sustainably reducing energy consumption already exist and are highly attractive from the operator’s point of view. Investments in modern ventilation technology pay off very quickly and improve plant efficiency without undue expense, especially in the case of older water treatment plants. The water treatment of the future holds far-reaching potential for mitigating water scarcity, promoting responsible management of raw materials and decreasing energy consumption. An example with major potential for the future is the generation of energy from waste water.


Generating electricity and heat from waste water

One of the most important issues for the future in the field of water treatment is the generation of energy from waste water. Every cubic metre of waste water contains four times the amount of energy used to purify that water; from a purely theoretical standpoint a waste water treatment plant could therefore produce more energy than it consumes. The principle behind this notion is simple: The solids contained in waste water, such as excrement, toilet paper or other particulates, can generally be used in biogas plants to generate electrical energy and heat. The technologies for this process have already been applied successfully, but there is still plenty of room for growth. For that reason, new technologies aimed at increasing sludge incineration are currently being researched and tested in the form of prototypes – with promising results.

But many obstacles still have to be overcome before the full potential of waste water in energy generation is realised. One of the challenges is to significantly increase the percentage of solids that can be extracted from the waste water before the actual purification process. This could be achieved, for example, by adding polymers that cause the sludge to clump together.


Waste water treatment plants as veritable power guzzlers – energy can be saved here

Energy efficiency is the most important issue for the water treatment of the future. On the one hand, operators of waste water treatment plants see themselves constantly faced with increasingly strict environmental regulations on the part of politicians. On the other, they have to introduce efficiency measures to counteract rising electricity prices. To understand the importance of energy efficiency in waste water treatment tanks, it helps to take a look at the energy balance of a treatment plant.
 

The roughly 10,200 waste water treatment plants installed in Germany use a total of approximately 4,400 gigawatt hours (GWh) of electrical energy per year. This corresponds to a specific consumption of 35 kWh/population equivalent per year. Waste water treatment plants therefore still account for around 0.7% of the power consumed in Germany.

It turns out that aeration is by far the main consumer for almost all the waste water treatment plants with sludge processes; while the percentage of power consumed by plants with aerobic sludge stabilisation is between 60% and 80%, it is still around 50% for plants with sludge digestion. Furthermore, there are other energy consumers that are not as significant as the sludge process. The main energy consumers at a glance: 


  • Internal recirculation DN
  • Pre-dewatering
  • Post-dewatering
  • Intermediate lifting mechanism
  • RLS handling
  • Denitrification circulation (DN)
  • Grit trap aeration
  • Aeration tank ventilation
  • Spatial filter
  • Inlet lifting mechanism
  • Digester circulation

A look at the average power consumption of these plants shows that the most potential for reducing energy consumption lies in the aeration of aeration tanks and in the constantly running pumping stations, for example, the inlet, the intermediate lifting mechanism and the internal recirculation. The aeration of aeration tanks plays the most important role, which is why this aspect is examined in detail later on.


Energy consumption in focus: additional measures for increasing efficiency

Increasing the energy efficiency of aeration tanks and using sludge or digester gas to generate energy and heat are not the only measures on the road to the water treatment of the future. Additional potential lies, for example, in integrating renewable energies into the energy systems of waste water treatment plants.

It is possible, for instance, to install solar cells or wind turbines on the grounds of waste water treatment plants to further improve the ratio of generated energy to total energy consumption. At the same time, it should obviously be kept in mind that these measures are subject to the same constraints as other sites and the profitability of the investment depends on the prevailing conditions, such as local sunshine and wind conditions. Although the use of solar collectors to generate heat is also of particular interest for plants without sludge digestion, this approach will probably play only a subordinate role in the future. For plants with aerobic sludge stabilisation, there is already usually an excess of heat available in the summertime, which renders the measure superfluous for this type of waste water treatment plant. Other measures for ensuring energy-efficient water treatment in the future seek to use hydroelectric power in the inlets and outlets of the waste water treatment plant. This approach offers only limited potential, however, because the available fall height is low and the amount of energy generated does not justify the effort and expense.

Particularly in the case of larger plants with sludge incineration, it is recommended to use bar screen debris as an additional fuel source to further increase energy efficiency. However, the potential of this technology is limited by the use of bar screen debris washers, which reduce the accumulation of debris.


Demand-driven aeration technology: high-efficiency measures

due to high energy consumption. Depending on the waste water treatment plant, the aeration process accounts for between 60% and 80% of the total energy requirement, which is why aeration is especially important for the water treatment of the future.

What happens in an aeration tank?

To understand why aeration tanks consume so much energy, let us take a brief look at the processes in a biological cleaning system. The aeration tanks rid the mechanically pre-clarified waste water of organic substances such as phosphates and nitrogen compounds. This decomposition is effected by microorganisms such as bacteria, the aerated sludge.

To biologically remove phosphates from waste water in the first step, the first part of the tank is kept low in oxygen. A great deal of oxygen is then introduced into the waste water by means of compressed air. The bacteria multiply rapidly because of the oxygen, causing the phosphates to bind with the biological sludge when combined with a dissolved precipitant. The sludge then decomposes in secondary treatment tanks and can be fed back into the aeration tanks or conveyed to the sludge treatment system. This process uses a great deal of energy due to the introduction of large quantities of compressed air.


Challenges and potential for optimisation in aeration technology

The challenge of aeration technology consists mainly in providing a demand-driven air supply capable of handling severe fluctuations in load profiles and varying levels of contamination. Older waste water treatment plants are often equipped with blower technologies that always provide the same amount of oxygen regardless of the supply situation, even though this is not always necessary. The challenge is therefore to implement demand-driven aeration on the one hand, and on the other, to supply the partial-load ranges of the load profile as efficiently as possible.

To efficiently supply energy to aeration tanks, AERZEN relies on a product portfolio that consists of one or more blower technologies implemented in accordance with the individual requirements of each waste water treatment plant. This approach makes it possible to achieve maximum efficiency and fully exploit the potential for savings.

The portfolio consists of turbo blowers, positive displacement blowers and rotary lobe compressors. The advantage is obvious: Each of these technologies has individual advantages and strengths, which can be tailored to the individual requirements. Whereas turbo blowers, for example, are impressively energy efficient by design, rotary piston machines excel in terms of adjustability and almost unvarying efficiency in the partial load range.  As a hybrid, the rotary lobe compressor combines the advantages of blower and compressor technology in a single system. Depending on the application, it is advisable to choose either a combination of different technologies or the most efficient technology for the case at hand. At the same time, it is possible to install not only different technologies, but also different sizes. And additional potential for savings can be realised if this approach is combined with an intelligent global control system.

Experience has shown that substantial energy savings can be achieved through optimised aeration. For example, by installing an Aerzen turbo blower and a Delta hybrid, the Rheda-Wiedenbrück waste water treatment plant managed to save 40,000 euro in energy costs – per year.

Information & documents

You have questions? LET'S TALK

Find your regional contact and get personal advice.

Aerzener Maschinenfabrik GmbH (Headquarter)

Reherweg 28

31855 Aerzen

Phone: +49 5154 81-0

Fax: +49 5154 81-9191

Emmerthaler Apparatebau GmbH

Langes Feld 4

31860 Emmerthal

Phone: +49 5155 622-0

Fax: +49 5155 622-11

Aerzen Turbo Europe GmbH

Freibusch 2-4

31789 Hameln

Phone: +49 5151 92384 0

Aerzen Digital Systems GmbH

Hefehof 8

31785 Hameln

Phone: +49 5151 40302660

AERZEN Deutschland GmbH & Co. KG (Sales)

Reherweg 28

31855 Aerzen

Phone: +49 5154 81 4000

AERZEN Deutschland GmbH & Co. KG (Service)

Reherweg 28

31855 Aerzen

Phone: +49 1516 110 2901

Aerzen do Brasil Ltda

Rua Dionysio Rito, n° 300, Distrito Industrial III, L14 Q D

13213-189 Jundiaí

Phone: +55 11 4612-4021

Fax: +55 11 4612 0232

AERZEN SLOVAKIA, s.r.o.

Pezinská 18

901 01 Malacky

Phone: +421 34772 5531

Fax: +421 34772 5529

- Sales Office South West

Brückenstraße 2a

66740 Saarlouis-Fraulautern

Phone: +49 6831 76828 0

Fax: +49 5154 81 716410

Aerzen Argentina SRL

Domingo de Acassuso 4743

B1605BFO Munro, Buenos Aires

Phone: +54 11 47622351

Aerzen France S.A.S

Zone Industrielle 10, Avenue Léon Harmel

92168 Antony Cedex

Phone: +33 1 46741300

Fax: +33 1 46660061

Aerzen Belgium N.V.

A.De. Coninckstraat 11

3070 Kortenberg

Phone: +32 2 757 22 78

Fax: +32 2 7572283

Aerzen Schweiz AG

Gewerbepark Morgenstern Im Alexander 4

8500 Frauenfeld

Phone: +41 52725-0060

Fax: +41 527250066

AERZEN Nederland B.V.

Bedrijventerrein Nieuwgraaf Fotograaf 3

6921 RR Duiven

Phone: +31 882379361

AERZEN INTERNATIONAL RENTAL B.V.

Typograaf 5

6921 VB Duiven

Phone: +31 88 9100050

ASP AERZEN Special Products B.V.

Bedrijventerrein Nieuwgraaf Fotograaf 3

6921 RL Duiven

Phone: +31 26 4463432

Fax: +31 26 4463049

Aerzen Finland OY AB

Teollisuustie 15

FI-02880 Veikkola

Phone: +358 9 8194720

Aerzen Colombia S.A.S.

Centro Empresarial Metropolitano, Bodega 27, Módulo 2 (Autopista a Medellín, km 3,4) Cota, Cundinamarca,

Código Postal 250017 Código

Phone: +57 601 841 5730

Fax: +57 601 841 5730

Aerzen Austria Handelsges.m.b.H.

Gewerbepark Tresdorf II/1

2111 Tresdorf

Phone: +43 2262 74388

Fax: +43 2262 74399

AERZEN POLSKA Sp. z.o.o.

Al. Niepodleglosci 18

02-653 Warszawa

Phone: +48 22 489 55 22

Fax: +48 22 489 55 27

AERZEN HUNGÁRIA KFT.

Alíz Utca 4

1117 Budapest

Phone: +36 1 4392200

Fax: +36 1 4391922

AERZEN CZ s.r.o.

Hraniční 1356

69141 Břeclav

Phone: +420 519 326 657

Fax: +420 519 326658

Aerzen Ibérica S.A.U

Calle Adaptación 15-17

28906 Getafe (Madrid)

Phone: +34 91 642 4450

AERZEN IBERICA S.A. SUCURSAL EM PORTUGAL

Rua Alfredo Lopes Vilaverde, 15B Escritório 3

2770-009 Paço de Arcos

Phone: +351 21 468 2466

Fax: +351 21 468 2467

AERZEN MACHINES LTD.

Aerzen House, Langston Road

IG10 3SL Loughton, Essex

Phone: +44 2085028100

Fax: +44 2085028102

AERZEN ASIA PTE LTD

61 Woodlands Industrial Park E9 E9 Premium, #07-01

757047 Singapore

Phone: +65 6254 5080

Fax: +65 6254 6935

asia@aerzen.com

company profile

Aerzen Taiwan Machinery

Branch office of Aerzen Asia No.170, Ln. 879, Guangfu Rd., Bade Dist.,

Taoyuan City 33457

Phone: +886 3 366 6660

Fax: +886 3 366 6536

taiwan@aerzen.com

company profile

Aerzen Scandinavia AB

Östra Bangatan 20

19560 Arlandastad

Phone: +46 8 59441880

Fax: +46 8 59117209

Aerzen Scandinavia Norway

Raveien 320

3184 Borre

Phone: +47 91 81 49 00

Aerzen Scandinavia Denmark

Industrivej 2

5550 Langeskov

Phone: +45 33 11 54 54

Aerzen USA Corporation

108 Independence Way

Coatesville, PA 19320

Phone: +1 610 380 0244

Fax: +1 610 380 0278

AERZEN CANADA INC.

980 Rue Valois, Suite 100 Vaudreuil-Dorion

J7V 8P2 Quebec

Phone: +1 450 424 3966

Fax: +1 450 424 3985

Aerzen México S.A. de C.V.

Cerrada Uniroyal # 18-A, Col. La Michoacana

Metepec, 52166

Phone: +52 722 235 9400

Fax: +52 722 235 9401

AERZEN MAKINE San. Ve Tic. Ltd. Sti.

IMES Sanayi Sitesi, C Blok, 308. SK, No:14, Y.Dudullu

34776 Ümraniye Istanbul

Phone: +90 216 420 00 32

Fax: +90 216 420 00 79

turkiye@aerzen.com

company profile

AERZEN Machines (India) PVT. LTD.

Plot No. E-115/116, G.I.D.C , Manjusar, Tal. Savli, Dist:

Vadodara-391 775 Gujarat

Phone: +91 2667 264-817

india@aerzen.com

company profile

AERZEN ITALIA SRL

Via Raffaello Sanzio, 52

20021 Bollate (MI)

Phone: +39 02 6707 5277

Fax: +39 02 6707 5003

AERZEN MACHINERY (SHANGHAI) CO., LTD

No. 655 Yuan Dian Road, Min Hang District

Shanghai 201108

Phone: +86 21 3323 9000

Fax: +86 21 3323 9199

Aerzen Romania S.R.L.

Sat Tunari Comuna Tunari Sos. De Centura nr. 25A

RO 077180 Judet Ilfov

Phone: +40 21 243 1883

Fax: +40 21 243 1884

Aerzen ME - FZE

DSO-DDP-Office-A1-222 Dubai Silicon Oasis P.O. Box: 341445

 Dubai

Phone: +971 432 431 66

Aerzen Adria d.o.o.

Varazdinska ulica, II odvojak 3

42000 Varazdin

Phone: +385 42 370 808

Fax: +385 42 370 018

Aerzen Australia Pty Ltd

57-59 Rodeo Drive

3175 Dandenong

Phone: +61 3 97067702

Fax: +61 3 9706 8584

Aerzen Chile SPA

Limache 3363 – Bodega 13

CP: 2520642 Viña del Mar

Phone: +56 32 235 8900

Aerzen Perú SAC

Carr. Panamericana Sur Km. 29.5 Almacenes F-08 y F-09 ZI Megacentro – Altura Puente Vidu

 Lurin – Lima

Phone: +51 1 434 3831

AERZEN NORTH AFRICA LLC

Sheraton Housing 35 el moltaka el araby, Nozha elgedida. Appt - 7, 8, 9.

 Cairo

Phone: +20 2 22698855

Fax: +20 2 22696611

Aerzen AIRGAS (PTY) Ltd.

175 Domkrag Street, Robertville Ext. 1

Roodepoort, Johannesburg

Phone: +27 0 11 474 2193

Fax: +27 0 11 474 2321

SHIPSHORE (CYPRUS) LTD

Patraikou 21-23, Flat 101, Palouriotisa TK 1048, P.O. Box 25283

1308 Nicosia

Phone: +357 22441222

Fax: +357 22490641

L.A Engineering & Consulting Ltd

PO Box 2907, 25 Ha‘ela Street

40500 Even Yehuda

Phone: +972 9 8996544

Fax: +972 9 8996547

Airgas Compressors (PTY) Nigeria Limited

3, Adebukola Omolabake Street, Off Eric Omobude Street, Ifako Bus Stop, Along Oworonsoki - Ogudu Expressway

 Lagos

Phone: +234 201 295 7871

Aerzen Thailand Co., Ltd

36/60 Village No. 5, Phlu Ta Luang, Subdistrict, Sattahip District

20180 Chonburi

Phone: +66 0 38 020 090

Fax: +66 86 664 1337

AERZEN VIETNAM

Representative office of AERZEN ASIA PTE. LTD Floor 8th, Unit 802A, Dai Minh Convention Tower, 77 Hoang Van Thai, Tan Phu Ward, District 7, Vietnam

 Ho Chi Minh City

Phone: +84 28 3535 2760

Aerzen Turbo Co, Ltd

800 Jeongjung-ri, Osong-eup, Heungdeok-gu, Cheongju-si,

Chungcheongbuk-28220 Korea

Phone: +82-43-238-6500

Fax: +82 70 4170 4567

local partner: DEWA Projekt OÜ

Väike-Ameerika 15

10129 Tallinn

Phone: +372 50 39239

Aerzen Finland OY AB

Teollisuustie 15

FI-02880 Veikkola

Phone: +358 9 8194720

Aerzen Australia - New Zealand Office

Unit 17a Hobill Avenue Wiri

2104 Auckland

Aerzen Australia Pty Ltd

57-59 Rodeo Drive

3175 Dandenong

Phone: +61 3 97067702

Fax: +61 3 9706 8584

AERZEN MACHINES LTD.

Unit 6a, Castlecomer Business Park, Kilkenny Rd, Ballyhimmin

R95 Castlecomer, Co. Kilkenny

Phone: + 353 567807085

Aerzen Korea Ltd

Hyundai Terrace Tower, E-dong #608, 7, Yeonmujang 5ga-gil, Seongdong-gu,

04782 Seoul

Phone: +82 2 6463 0063

Fax: +82 2 6463 0064

Aerzen Turbo Co, Ltd

800 Jeongjung-ri, Osong-eup, Heungdeok-gu, Cheongju-si,

Chungcheongbuk-28220 Korea

Phone: +82-43-238-6500

Fax: +82 70 4170 4567

Aerzen Arabia Ltd.

Abed Al-Mis’hal Tower 9th Floor, office 907, Building 3958, District 35514 Al Jubail, Kingdom of Saudi Arabia

 

Phone: +966 13 362 8826

Service Centre - Aerzen Arabia Ltd.

Rezayat Group Dammam Port Area, Dammam Kingdom of Saudi Arabia